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1 INTRODUCTION 
 
Reliable prediction of ultimate condition for FRP confined section is a fundamental step when 
implementing design equations. For both ultimate strain and stress a lot has been done for circu-
lar sections, while few advances have been reported for square and rectangular ones: for the ul-
timate strength prediction the authors proposed an analytical model tailored for square section. 
Since it depends on the corner radius, circular sections are included as a particular case. The ba-
sic assumptions of the model are: 1) the ultimate stress is independent of the confinement path, 
and 2) the confinement internal stress field is independent of concrete Young modulus, under a 
given boundary condition given in terms of confinement force. The model, as well as its as-
sumptions, have been already discussed in (Monti and Nisticò, 2007); in the following sections, 
after a preliminary explanation of the approach adopted for square sections, its extension to rec-
tangular sections will be presented.  
 
2 ULTIMATE STRENGTH PREDICTION 
 
In order to evaluate the ultimate strength, it is expedient to express the Confinement Stress Field 
(CSF) in terms of normalized quantities, i.e., the ratio (PSR = Principal Stress Ratio) between 
the minimum (σmin) and maximum (σmax) principal stresses, and the ratio (NMPS = Normalized 
Maximum Principal Stress) between σmax and the constant confinement stress (fl ) evaluated in a 
circular section with radius R = 0.5·Lmin (compression stresses are considered as positive).  Pa-
rametric numerical investigations have been carried out in order to capture the trend of both 
PSR and NMPS: their spatial distribution depends on the section aspect ratio (here defined as 
the ratio between the long, Lmax, and short, Lmin, section side: S = Lmax/Lmin) as reported in the 
following sections, where three fundamental cases will be analysed: 1) square section, 2) rec-
tangular section with S ≥ 2, and 3) rectangular section with S ≤ 2. 

2.1.1 Square section 
 
In order to define the CSF, two sub-domains can be identified (see Figure 1a): 1) the core, that 
corresponding to the area of the inscribed circle, 2) the corner, corresponding to the area be-
tween the core and the section perimeter. It can be observed (Figure 1b), as already reported in 
(Monti and Nisticò, 2007), that:  
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• inside the core the NMPS is practically constant and equal to 1, b) the PSR is 1 at the centre 
and tends to 0 close to the core boundaries;  

• inside the corner  a) the NMPS reaches its max absolute value at the section edge and its min 
absolute value at the core boundaries; b) the PSR can attain (depending on the corner round-
ing) negative values; c) at the corner centroid the PSR can assume a value greater (and not 
lower) than the core PSR; 

• clearly, the CSF depends on the ratio between the corners rounding radius rc and the core ra-
dius R (half of the section side: R = 0.5 L): both NMPS and PSR tend to 1 if the corner radius 
tends to the core radius.  

Based on the previous assumptions: a) the core maximum principal stress, (σmax)core, is assumed 
equal to the stress field in a circular section having the same wrapping in terms of width and 
mechanical properties; b) the corner maximum principal stress, (σmax)corner, depends (if evaluated 
at the corner centroid) on the corner radius (rc) as follows: 

( ) ( )2 2 c
max maxcorner core
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σ σ⎛ ⎞= − ⋅ ⋅⎜ ⎟

⎝ ⎠
 (1) 

The previous expression states that: 1) if rc tends to 0.5·L, (σmax)corner tends to (σmax)core  since the 
square section becomes circular, 2) if rc < 0.5·L, (σmax)corner depends on the parameter ß, which 
can be obtained from statistical elaboration of experimental data. 
At the corner centroid, the PSR is assumed to depend on the corner/core radii ratio, as: 
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The previous expression implies that: 1) if rc tends to 0.5·L, αcorner tends to 1 (equal confinement 
stresses); 2) if rc = 0, αcorner is equal to (1- γ), where the γ parameter can be obtained from statis-
tical elaboration of experimental data. 
 
The evaluation of the core PSR can be assumed as inversely proportional to the distance d of the 
considered point from the core centre (having an axially symmetric field), according to the fol-
lowing expression: 
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The previous expression implies (Figure 2) that αcore is equal to 1 either at the centre of the core 
or everywhere if rc = 0.5·L (that is the case of the circular section). 
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Figure 1. Square section: region identification (a); numerically evaluated NMPS (b) and numerically 
evaluated PSR (c). The reported stress field relates to the cases of rc = 0 (b1, c1) and rc = 0.2L (b2, c2).  
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Figure 2. Square section. Assumed core PSR:  rc =0 (a) and  rc  = 0.5L  (b).  
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2.1.2 Rectangular section 
 
As already specified, the PSF distribution depends on the above-defined section aspect ratio S. 
In order to define homogeneous regions in terms of PSF, different assumptions will be made by 
distinguishing different sub-domains for the two analyzed cases (S ≤ 2 and S ≥ 2).      
If S ≤ 2, three sub-domains (Figure 3a) can be identified: 1) two half-cores, 2) the corners, and 
3) an intermediate region. The diameter of the two half-cores is equal to Lmin: each centre is dis-
tant  0.5·Lmin  from the nearest shortest section side. The corner sub-domain corresponds to the 
area bounded by the two half-cores boundaries and the section perimeter. The intermediate sub-
domain, in between the two half-cores, corresponds to a rectangular region whose length (2·l1) 
ranges between zero, when S = 1, and Lmin, when S = 2. 
If S ≥ 2,  together with the corner and the two half-core regions (here called core1), three other 
sub-domains will be identified; they are: a) an intermediate region (here called inter1), whose 
length is (Lmax -2·Lmin ), the two other half-cores (here called core2) and the remaining region 
(here called inter2) that lies between the core region and the intermediate one.  
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Figure 3. Rectangular section: S ≤ 2; sub-domains (a) and PSR (b). 
 
 
 
 
 
 
(a) 

 
 
 
 
 
 
(b) 

Figure 4. Rectangular section. S ≥ 2: sub-domains (a) and PSR (b). 
 
Independently of the aspect ratio, 1) the corner CSF can be assumed as that already described 
for the square region, and 2) outside the corner region the NMPS is practically constant and 
equal to 1. Regarding the outside corner region the following PSR can be assumed depending on 
the aspect ratio.  
If S ≤ 2 the two half-cores are characterized by PSR almost equal to that assumed for the square 
core, while the intermediate region is in general characterized by a non-simple distribution, con-
sequent to the interaction between the two cores (Figure 3b and 5a). If rc = 0.5·Lmin , it is possi-
ble to assume that the distribution has the shape reported in Figure 5b, where it is possible to 
note that the two half-cores are characterized by a unitary constant value, while the other two 
confined parts are characterized by a decreasing value according the following expression: 
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where l (whose value ranges between 0 and l1) is the distance of the considered point from the 
segment passing from the core centre and perpendicular to the two longer sides.    
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Figure 5. Rectangular section (S ≤ 2). Assumed PSR : rc=0 (a) and rc=0.5×Lmin (b)   
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If S ≥ 2, 1) the two half core1 regions are characterized by a PSR almost equal to that assumed 
for the square core, 2) one of the two intermediate (inter1) region is characterized by mono-
dimensional CSF so that σmin = 0. For the other regions, the CSF can be assumed as follows, dis-
tinguishing two extreme situations that are rc =0 and rc =0.5·Lmin:  
• if rc =0, the core2  PSR can be assumed equal to that assumed for the core1, and inter2 region is 

characterized by mono-dimensional CSF so that σmin = 0;  
• if rc =0.5·Lmin, core2 and inter2 regions can be grouped in one region characterized by a de-

creasing value of the PSR as expressed through Equation 4. 
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Figure 5. Rectangular section (S = 2): assumed min/max PSR.  

2.2 Evaluation of the section ultimate strength 
Under the assumption of path-independence, if the CSF is known at the ultimate condition (e.g., 
FRP failure), then the corresponding ultimate strength can be evaluated in each region of the 
section, based on a selected strength criterion here assumed as follows: 

( )1
min

cc co max
max

f C f F σσ
σ

= ⋅ + ⋅  (5) 

where F(σmax) is a function giving the strength increase when σmin = σmax (i.e., in circular sec-
tions). 
By integrating the previous expression over the section area, the global ultimate strength can be 
found by evaluating the ultimate resisting force as follows: 
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where Fco = C1·fco·Asec is the unconfined section ultimate resisting force. In order to obtain a vi-
able expression for it, the simplifications, already discussed (see § 2.1), are introduced in the 
definition of the CSF, depending on the aspect ratio S.  
In case of square section, the strength increase has to be differentiated for either of the two per-
tinent regions that are core and corner; so that: 
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In case of rectangular section with S ≥ 2, in order to evaluate the ultimate resisting force by 
means of an expression formally consistent with the assumed distribution, the following expres-
sion has been developed: 

( ) ( ) 1cc cc cc ccorner coreF F F G ( r )∆ = ∆ + ∆ +  (8a) 

where (∆Fcc)corner and (∆Fcc)core can be evaluated through expressions 7 (b,c), and G1(rc) through 
the following expression: 
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that can be approximated as follows, assuming Π ~ 3: 
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The previous expression states (having introduced the G1(rc) function) that if rc = 0, the strength 
increase can be obtained by considering the contribution of two cores, while approaching rc the 
value of  0.5·Lmin the contribution of one core has to be replaced with the contribution consistent 
with the pertinent min/max PSR distribution (see Figure 5b and Equation 4).  
In case of rectangular section with S ≤ 2, in addition to the corner region and the two half core 
regions, the contribution of the intermediate zone has to be considered. If  rc = 0.5·Lmin , this 
contribution can be evaluated as follows: 
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∫  (9a) 

In order to generalize Equation 9a, introducing the dependence on the corner radius, a new func-
tion is defined so that: 

( ) ( ) ( )2cc cc cint intF F G r∆ = ∆ +  (9b) 

where the new introduced function has to fulfil the following conditions: 1) it has to be zero if S 
= 1 and it has to be such that the ultimate resisting section strength evaluated by means of  
Equation 9b be equal to the value obtainable from Equation 8a, if S = 2. So that, the sought 
function can be evaluated according to the following expression: 
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 (9c) 

that can be approximated as follows, assuming Π ~ 3: 
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3 RESULTS AND DISCUSSIONS 

Equations 7,8,9 define the ultimate strength for square and rectangular section as function of: 1) 
the parameters β and γ (introduced for the definition of the corner stress distribution), 2) the pa-
rameter C1 introduced for the definition of the unconfined strength, and 3) F(σmin) that can be 
assumed as proportional to the minimum principal confinement stress (flu) as: 

( )
3

max 2

C
c

lu
rF C f
R

σ ⎛ ⎞= ⋅ ⋅⎜ ⎟
⎝ ⎠

 (10) 

where (rc/R) 3C  represents a reduction factor accounting for the ultimate strain reduction when 
considering coupon test failure strains (for sharp corner radius, rc= 0, the confinement is as-
sumed as inefficient). A calibration of the parameters (β = 1.7, γ = 1, C1 = 0.8, C2 = 3; C3 = 0.5) 
has been performed in (Monti and Nisticò, 2007) where, further on, it has been deduced that for 
the corners the core ultimate stress expression can be assumed.  
Having defined the parameters, based on the set of proposed expressions (7,8,9) the confined 
strength can be expressed as follows for the three considered cases (S = 1, S ≥ 2 , S ≤ 2): 
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where: 
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The proposed expressions fit well the experimental results presented in a companion paper 
(Monti and Nisticò, 2008). The evaluated errors are reported in Table 1 in terms of Average ab-
solute percentage Error (AE), and Average Ratio (AR) between predicted and experimental val-
ues (the errors have been specified distinguishing the set of square, rectangular and circular sec-
tion here intended as section with rc ≥ 0.25L ). 

 
Table 1. Predictive equations: evaluated errors  

 Circular   Square  Rectangular All 
Ntests 28 48 5 81 
AE 9.2 33.5 19.50 24.00 
AR 1.1 1.35 1.10 1.25 

4 CONCLUSIONS 

This paper presented an analytical model conceived to predict the ultimate strength of FRP-
confined square/rectangular sections with different corner rounding radii. The model is based 
on: 1) a path-independence assumption, 2) a simplified analytical description of the non-
uniform confinement stress field, and evaluates the ultimate strength through a simple strength 
criterion. The proposed model has been satisfactorily validated against the results of 81 selected 
experimental tests.  
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